# FLORIDA SOLAR



# Potential of Energy Efficiency and Renewable Energy Savings To Impact Florida's Projected Energy Use in 2014

#### Author

Fairey, Philip

#### **Publication Number**

FSEC-RR-58-06

#### Copyright

Copyright © Florida Solar Energy Center/University of Central Florida 1679 Clearlake Road, Cocoa, Florida 32922, USA (321) 638-1000 All rights reserved.

#### Disclaimer

The Florida Solar Energy Center/University of Central Florida nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Florida Solar Energy Center/University of Central Florida or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the Florida Solar Energy Center/University of Central Florida or any agency thereof.

A Research Institute of the University of Central Florida 1679 Clearlake Road, Cocoa, FL 32922-5703 • Phone: 321-638-1000 • Fax: 321-638-1010 www.fsec.ucf.edu This page intentionally left blank.



## Potential of Energy Efficiency and Renewable Energy Savings To Impact Florida's Projected Energy Use in 2014

Philip Fairey Deputy Director January 2006

### Introduction

Florida's 2004 electrical energy use was 233 billion kilowatt-hours. Over half (51%) of this energy use went to residential building energy. The state's current 10-year predictions for electrical energy use in 2014 show a requirement for approximately 308 billion kilowatt-hours of electricity, an increase of approximately 75 billion kilowatt-hours. This study presents an example of how Florida can radically alter its 2014 energy use projection by aggressively pursuing residential building energy efficiency improvements and aggressively increasing its use of proven renewable energy resources.

## Methods

This study was conducted using EnergyGauge® USA, a detailed, hourly, building energy simulation software based on the U.S. Department of Energy's DOE-2.1E (v.120) simulation engine. EnergyGauge was developed by the Florida Solar Energy Center and has been nationally accredited by the Residential Energy Services Network (RESNET) for use as a home energy rating software tool.<sup>1</sup>

Three typical Florida homes, each with 2000 square feet of conditioned floor area and three bedrooms have been evaluated using EnergyGauge to determine the degree to which they could be improved through off-the-shelf energy efficiency and renewable energy technology. Each home is improved to the point that it will qualify for the new \$2,000 federal tax credit for highly efficient new homes. This tax credit, created by the U.S. Energy Policy Act of 2005, requires that the heating and cooling energy use for qualifying homes be 50% or less of the heating and cooling energy use of a reference home, as defined by the minimum requirements of Section 404 of the 2004 Supplement to the International Energy Efficiency Code (IECC).<sup>2</sup>

The three homes were located in Miami, Tampa and Tallahassee in order to represent the variety of Florida climates. Each of the homes was configured in three ways:

- 1. To represent the current minimum Florida building code standards (2004 baseline home)
- 2. To represent a home that would qualify for the 2006 IRS tax credit, which also contained a solar hot water heater (EERE home), and
- 3. The same configuration as number 2 with a 2 kW-peak photovoltaic system added (EERE-PV home).

1679 CLEARLAKE ROAD, COCOA, FLORIDA 32922-5703 = TEL 321-638-1000 = FAX 321-638-1010 = www.fsec.ucf.edu

STATE UNIVERSITY SYSTEM OF FLORIDA . AN EQUAL OPPORTUNITY/AFFIRMATIVE ACTION EMPLOYER . A RESEARCH INSTITUTE OF THE UNIVERSITY OF CENTRAL FLORIDA



<sup>&</sup>lt;sup>1</sup> For a list of RESNET accredited software see <u>http://resnet.us/programs/software/directory.htm</u>

<sup>&</sup>lt;sup>2</sup> These tax credit qualification criteria are further defined in RESNET Publication 05-001, which may be downloaded at <u>http://www.resnet.us/standards/tax\_credits/procedures.pdf</u>

The results from these simulations were then entered in an Excel spreadsheet to perform analysis and expand the results to represent statewide potentials. In addition, the hourly electric energy demand results for the peak summer and peak winter days for each climate were also downloaded to the spreadsheet to examine the impacts on utility load shape.

#### Results

Results show that significant electrical energy savings in Florida homes are both possible and practical. If the IRS tax credits are augmented by State of Florida rebates, electrical energy savings exceeding 40% of total home energy use are cost-effectively achieved (for the consumer) in all three climates zones.

#### Summary Results

Results from the individual simulations are broadly extrapolated to the entire state by assuming specific installations per year over the 10 years for each of the various renewable energy and energy efficiency strategies evaluated. The annual installations shown in Table 1 were used to extrapolate the individual results to the statewide totals. It is also important to note that Florida constructs approximately 160,000 new homes each year and has approximately 6.2 million existing homes in place.

 Table 1. Assumed Installations for Aggressive Florida Energy Efficiency and Renewable Energy Technologies Program

| Rene wusie Energy Teennorogies Trogram  |                        |                 |  |  |  |  |
|-----------------------------------------|------------------------|-----------------|--|--|--|--|
| Measures                                | <b>Population Base</b> | Installations   |  |  |  |  |
| High-efficiency new homes               | 160,000 per year       | 24,000 per year |  |  |  |  |
| Solar hot water (new homes)             | 160,000 per year       | 24,000 per year |  |  |  |  |
| Improved existing home efficiency (15%) | 6,200,000              | 62,000 per year |  |  |  |  |
| Solar hot water (existing homes)        | 6,200,000              | 62,000 per year |  |  |  |  |
| Photovoltaic systems (2 kWp)            | 6,200,000              | 9,300 per year  |  |  |  |  |

Using the above assumptions for installations that Florida could achieve by providing additional incentives to those that are provided by IRS tax credits, the statewide savings of such a program can be estimated as shown in Table 2 with costs as shown in Table 3.

| Table 2. Savings in Energy Use, Costs and CO <sub>2</sub> for Statewide Program |       |         |       |         |         |         | .111     |                 |
|---------------------------------------------------------------------------------|-------|---------|-------|---------|---------|---------|----------|-----------------|
|                                                                                 | Cons  | umer    | New   | Plant   | Fuel    | TRECs   | Total \$ | CO <sub>2</sub> |
|                                                                                 | Savi  | ings    | Savi  | ngs     | Saved   | Created | Saved    | Saved           |
| 10-years                                                                        | (TWh) | (\$mil) | (MW)  | (\$mil) | (\$mil) | (\$mil) | (\$mil)  | (MTons)         |
| Efficiency                                                                      | 14.68 | \$1,468 | 950   | \$950   | \$734   | n/a     | \$3,152  | 21.16           |
| Renewables                                                                      | 10.52 | \$1,052 | 681   | \$681   | \$526   | \$421   | \$2,681  | 15.17           |
| Total                                                                           | 25.20 | \$2,520 | 1,631 | \$1,631 | \$1,260 | \$421   | \$5,833  | 36.34           |
| Annual                                                                          |       |         |       |         |         |         |          |                 |
| Efficiency                                                                      | 2.67  | \$267   | 173   | \$173   | \$133   | n/a     | \$573    | 3.85            |
| Renewables                                                                      | 1.91  | \$191   | 124   | \$124   | \$96    | \$77    | \$487    | 2.76            |
| Total                                                                           | 4.58  | \$458   | 297   | \$297   | \$229   | \$77    | \$1,060  | 6.61            |

#### Table 2. Savings in Energy Use, Costs and CO2 for Statewide Program

| Individual Components        | Costs     | Market  | IRS     | Florida | Consumer | Rebate    |
|------------------------------|-----------|---------|---------|---------|----------|-----------|
| Individual Components        | (\$/unit) | (\$mil) | (\$mil) | (\$mil) | (\$mil)  | Total (%) |
| Solar hot water (new)*       | \$3,200   | \$768   |         |         |          |           |
| Federal tax credits          | \$960     |         | \$230   |         |          |           |
| Florida Rebate (1)           | \$590     |         |         | \$142   |          |           |
| Total rebates                | \$1,550   |         |         |         | \$372    | 48.4%     |
| Net consumer costs           | \$1,650   |         |         |         | \$396    |           |
| Total units                  | 240,000   |         |         |         |          |           |
| Efficiency - new homes*      | \$7,000   | \$1,680 |         |         |          |           |
| Federal tax credits          | \$2,000   |         | \$480   |         |          |           |
| Florida Rebate (1)           | \$1,453   |         |         | \$349   |          |           |
| Total rebates                | \$3,453   |         |         |         | \$829    | 49.3%     |
| Net consumer costs           | \$3,547   |         |         |         | \$851    |           |
| Total units                  | 240,000   |         |         |         |          |           |
| Solar hot water (existing)*  | \$3,600   | \$2,232 |         |         |          |           |
| Federal tax credits          | \$1,080   |         | \$670   |         |          |           |
| Florida Rebate (1)           | \$590     |         |         | \$366   |          |           |
| Total rebates                | \$1,670   |         |         |         | \$1,035  | 46.4%     |
| Net consumer costs           | \$1,930   |         |         |         | \$1,197  |           |
| Total units                  | 620,000   |         |         |         |          |           |
| Efficiency - existing homes* | \$4,000   | \$2,480 |         |         |          |           |
| Federal tax credits          | \$500     |         | \$310   |         |          |           |
| Florida Rebate (1)           | \$729     |         |         | \$452   |          |           |
| Total rebates                | \$1,229   |         |         |         | \$762    | 30.7%     |
| Net consumer costs           | \$2,771   |         |         |         | \$1,718  |           |
| Total units                  | 620,000   |         |         |         |          |           |
| Photovoltaic systems*        | \$14,000  | \$1,302 |         |         |          |           |
| Federal tax credits          | \$2,000   |         | \$186   |         |          |           |
| Florida Rebate (2)           | \$5,000   |         |         | \$465   |          |           |
| Total rebates                | \$7,000   |         |         |         | \$651    | 50.0%     |
| Net consumer costs           | \$7,000   |         |         |         | \$651    |           |
| Total units                  | 93,000    |         |         |         |          |           |
|                              | Totals:   | \$8,462 | \$1,876 | \$1,631 | \$4,813  | 41.4%     |

Table 3. Apportioned 10-year Costs and Rebates of Example Statewide Program

(2) Rebate = \$2.50 per peak-watt with minimum installation of 2 kWp

Typical costs are best available estimates

Table 3 above shows a rebate incentive cost to Florida of \$1,631 million over 10 years or \$163 million per year. However, such a rebate program cannot be carried out for the cost of the rebates alone. Estimated total costs to operate the program are as follows:

| Consumer rebate incentives:       |      | \$163.1 | million per year |
|-----------------------------------|------|---------|------------------|
| Marketing costs @                 | 7.5% | \$12.2  |                  |
| Verification & assessment costs @ | 5.0% | \$8.2   |                  |
| Administration costs @            | 5.0% | \$8.2   |                  |
| Total Costs:                      |      | \$192   | million per year |

While this may appear to be a large expenditure, it should be remembered that the electrical savings are quite large at more than 4,580 gigawatt-hours per year and more than \$450 million in consumer savings each year. It should also be remembered that implementation of these measures is being highly leveraged by federal tax credits, which are estimated to add an additional \$188 million to the total value of the program. There are also additional economic benefits that accrue from keeping almost \$230 million per year in fuel costs from leaving the state, creating more than \$75 million in Tradable Renewable Energy Credits each year and saving almost 7 million tons of  $CO_2$  emissions each year. Based on the market expenditures to achieve these results and a simplified estimate of 15 net new jobs per million in expenditures, this program would also create more than 126,000 jobs over the 10-year period.

It is also important to remember that Florida has authorized other programs for the purpose of saving energy with similar annual costs through the Florida Energy-Efficiency and Conservation Act (FEECA). The Florida Public Services Commission (PSC) reports that statewide utility demand side management (DSM) programs operated under FEECA recovered \$240 million in costs and saved 239 gigawatt-hours of electricity in 2004. A comparison of this program with the example presented here, as shown in Table 4 below, is helpful.

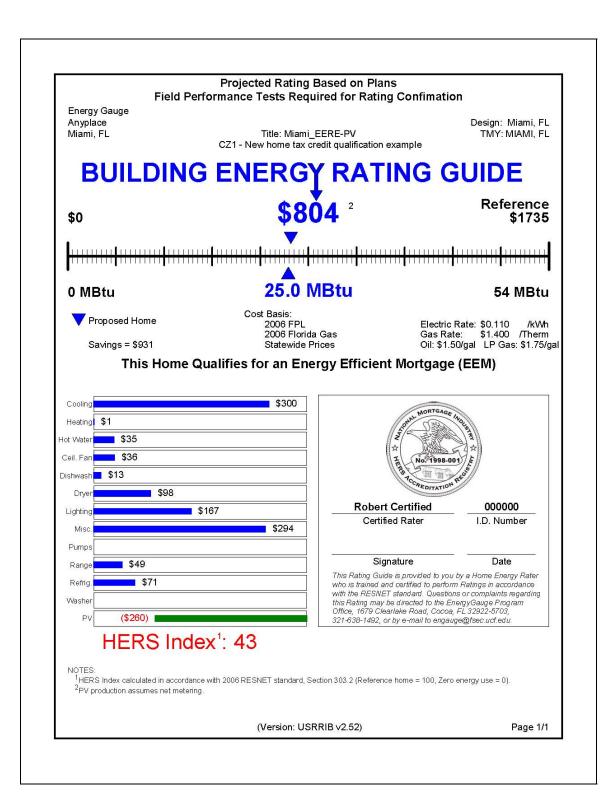
| Energy Efficiency Program  | Annual<br>Costs<br>(\$mil) | Annual<br>Savings<br>(GWh) | Cost of Saved Energy<br>(at end of 10 <sup>th</sup> year)<br>(\$/kWh) |
|----------------------------|----------------------------|----------------------------|-----------------------------------------------------------------------|
| 2004 Florida DSM programs  | \$240                      | 239                        | \$0.1826                                                              |
| Florida EERE study program | \$379                      | 4,582                      | \$0.0150                                                              |
| Florida rebate subtotals   | \$192                      |                            | \$0.0076                                                              |
| IRS tax credit subtotals   | \$188                      |                            | \$0.0074                                                              |

Table 4. Comparison of Study Results with Florida's Current DSM Programs

#### Detailed Simulation Results

The following pages contain detailed information on the three EERE prototypes and results considered in this study. All results are as reported by the EnergyGauge USA home energy rating, code compliance and building energy simulation software tool:

- The detailed improvements that were considered for each of the three EERE prototypes,
- The calculated energy savings potential for each prototype,
- The Home Energy Rating<sup>3</sup> for each prototype, and
- The peak summer and winter day load shapes for each prototype.


<sup>&</sup>lt;sup>3</sup> The *Florida Building Energy Efficiency Ratings Act of 1993* provides a uniform means for all Florida buildings to be rated for energy efficiency. The Florida Solar Energy Center is a nationally accredited Home Energy Rating System (HERS) Provider in accordance with the national standards for home energy ratings and the software used here for this purpose, EnergyGauge USA, is a nationally accredited HERS software tool.

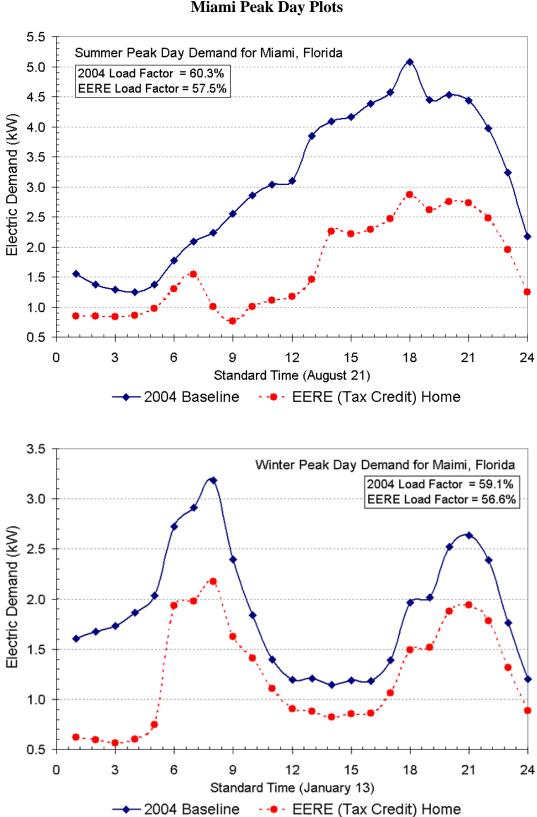

| Component               | Characteristic                                                      |
|-------------------------|---------------------------------------------------------------------|
| Windows                 | Low-e, metal frame, SHGC=0.28 windows                               |
| Doors                   | Insulated (R-5)                                                     |
| Ceilings                | Standard truss; R-30 insulation                                     |
| Walls                   | Concrete block; R-10 insulation                                     |
| Floors                  | Slab-on-grade with 50% tile; R-0 insulation                         |
| Roof                    | Barrel tile, light colored (solar reflectance = $40\%$ )            |
| Attic                   | Standard vented with radiant barrier system (RBS)                   |
| Heating and cooling     | SEER-15, HSPF-8.2 heat pump                                         |
| Air distribution system | Interior ducts & AHU; leakage $\leq 0.03 \text{ cfm}25/\text{ft}^2$ |
| Controls                | Programmable thermostat                                             |
| Ventilation             | Mechanically controlled to minimize infiltration                    |
| Lighting                | 50% fluorescent (or CFL) lighting                                   |
| Refrigerator            | Energy Star qualified                                               |
| Ceiling fans            | Energy Star qualified                                               |
| Dishwasher              | Energy Star qualified                                               |
| Renewable hot water     | Open loop solar hot water (30% tax credit)                          |
| Renewable power         | 2.0 kW-peak photovoltaic system (30% tax credit)                    |

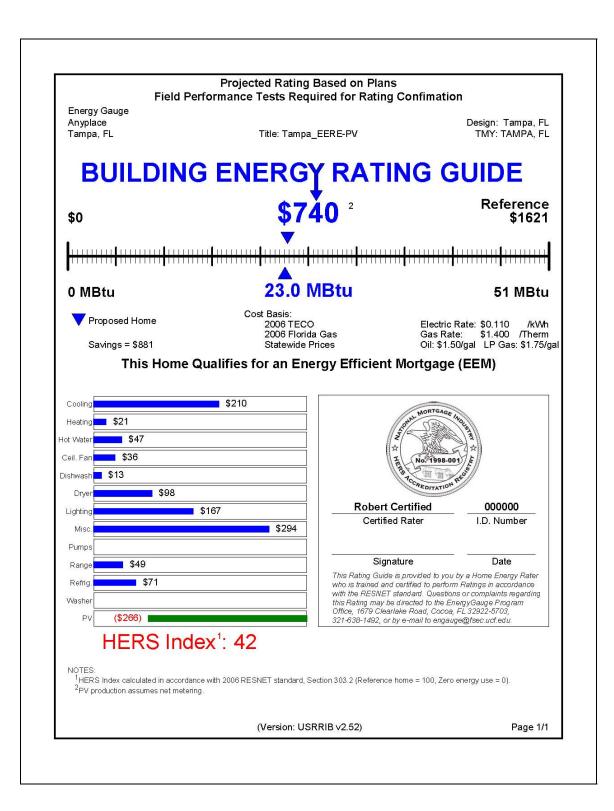
 Table 5. Miami EERE-PV Home (off-the-shelf technology)

## Table 5.a. EnergyGauge Predicted Energy Use and Savings for Miami Cases

| Energy End Uses           | 2004 baseline | EERE Home | kWh/kW Savings | % Savings |
|---------------------------|---------------|-----------|----------------|-----------|
| Cooling                   | 6,918         | 2,732     | 4,186          | 60.5%     |
| Heating                   | 42            | 8         | 34             | 81.0%     |
| Hot water                 | 2,238         | 322       | 1,916          | 85.6%     |
| Ceiling fans              | 651           | 329       | 322            | 49.5%     |
| Dishwasher                | 145           | 115       | 30             | 20.7%     |
| Dryer                     | 891           | 891       | 0              | 0.0%      |
| Lighting                  | 2,055         | 1,522     | 533            | 25.9%     |
| Miscellaneous             | 2,671         | 2,671     | 0              | 0.0%      |
| Range                     | 447           | 447       | 0              | 0.0%      |
| Refrigerator              | 775           | 650       | 125            | 16.1%     |
| Total kWh                 | 16,756        | 9,683     | 7,073          | 42.2%     |
| Summer peak kW            | 5.08          | 2.87      | 2.21           | 43.5%     |
| Winter peak kW            | 3.18          | 2.17      | 1.01           | 31.7%     |
| 2 kWp PV kWh              |               | -2,366    | 9,439          | 56.3%     |
| CO <sub>2</sub> tons/year | 17.97         | 7.61      | 10.36          | 57.7%     |






#### Residential Building Energy Efficiency and Renewable Energy (EERE) Savings Potential Miami Peak Day Plots

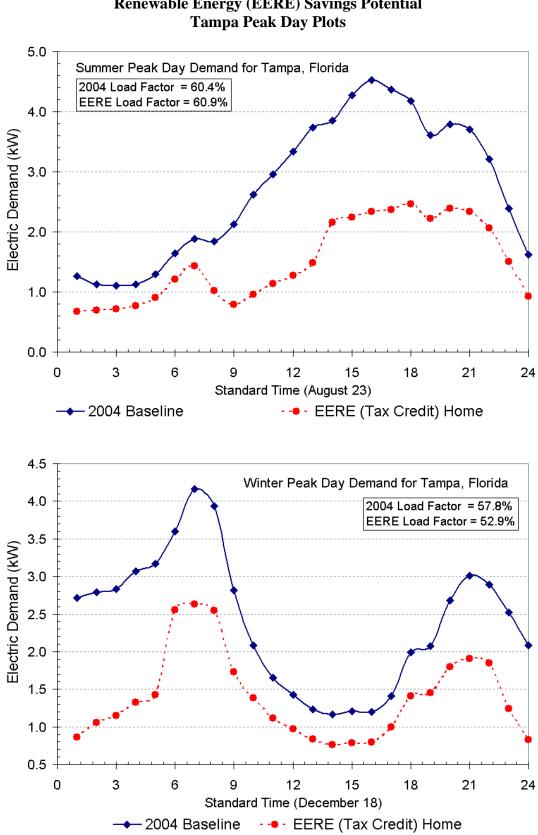

| Component               | Characteristic                                                       |
|-------------------------|----------------------------------------------------------------------|
| Windows                 | Low-e, vinyl frame, SHGC=0.28 windows                                |
| Doors                   | Insulated (R-5)                                                      |
| Ceilings                | Standard truss; R-30 insulation                                      |
| Walls                   | Concrete block; R-10 insulation                                      |
| Floors                  | Slab-on-grade with 50% tile; R-0 insulation                          |
| Roof                    | Barrel tile, light colored (solar reflectance = $40\%$ )             |
| Attic                   | Standard vented with radiant barrier system (RBS)                    |
| Heating and cooling     | SEER-15, HSPF-8.2 heat pump                                          |
| Air distribution system | Interior ducts & AHU; leakage $\leq 0.03 \text{ cfm} 25/\text{ft}^2$ |
| Controls                | Programmable thermostat                                              |
| Ventilation             | Mechanically controlled to minimize infiltration                     |
| Lighting                | 50% fluorescent (or CFL) lighting                                    |
| Refrigerator            | Energy Star qualified                                                |
| Ceiling fans            | Energy Star qualified                                                |
| Dishwasher              | Energy Star qualified                                                |
| Renewable hot water     | Open loop solar hot water (30% tax credit)                           |
| Renewable power         | 2.0 kW-peak photovoltaic system (30% tax credit)                     |

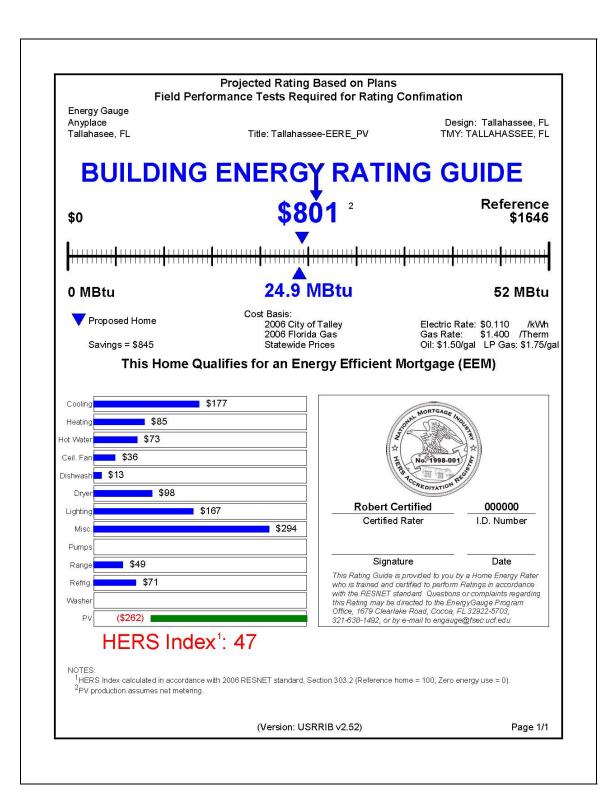
 Table 6. Tampa EERE-PV Home (off-the-shelf technology)

## Table 6.a. EnergyGauge Predicted Energy Use and Savings for Tampa Cases

| Table 0.a. EnergyGauge Treatered Energy Ose and Savings for Tampa Cases |               |           |                |           |  |  |  |
|-------------------------------------------------------------------------|---------------|-----------|----------------|-----------|--|--|--|
| Energy End Uses                                                         | 2004 baseline | EERE Home | kWh/kW Savings | % Savings |  |  |  |
| Cooling                                                                 | 5,052         | 1,877     | 3,175          | 62.8%     |  |  |  |
| Heating                                                                 | 559           | 146       | 413            | 73.9%     |  |  |  |
| Hot water                                                               | 2,417         | 427       | 1,990          | 82.3%     |  |  |  |
| Ceiling fans                                                            | 651           | 329       | 322            | 49.5%     |  |  |  |
| Dishwasher                                                              | 145           | 115       | 30             | 20.7%     |  |  |  |
| Dryer                                                                   | 891           | 891       | 0              | 0.0%      |  |  |  |
| Lighting                                                                | 2,055         | 1,522     | 533            | 25.9%     |  |  |  |
| Miscellaneous                                                           | 2,671         | 2,671     | 0              | 0.0%      |  |  |  |
| Range                                                                   | 447           | 447       | 0              | 0.0%      |  |  |  |
| Refrigerator                                                            | 775           | 650       | 125            | 16.1%     |  |  |  |
| Total kWh                                                               | 15,663        | 9,075     | 6,588          | 42.1%     |  |  |  |
| Summer peak kW                                                          | 4.53          | 2.47      | 2.06           | 45.5%     |  |  |  |
| Winter peak kW                                                          | 4.16          | 2.63      | 1.53           | 36.8%     |  |  |  |
| 2 kWp PV kWh                                                            |               | -2,416    | 9,004          | 57.5%     |  |  |  |
| CO <sub>2</sub> tons/year                                               | 16.47         | 7.04      | 9.43           | 57.3%     |  |  |  |






# **Residential Building Energy Efficiency and** Renewable Energy (EERE) Savings Potential

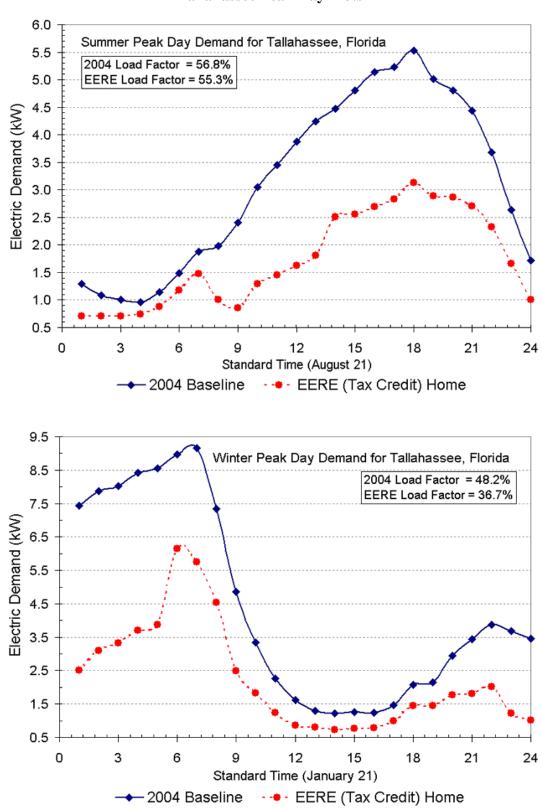

| Component               | Characteristic                                                      |
|-------------------------|---------------------------------------------------------------------|
| Windows                 | Low-e, vinyl frame, SHGC=0.40 windows                               |
| Doors                   | Insulated (R-5)                                                     |
| Ceilings                | Standard truss; R-30 insulation                                     |
| Walls                   | 2x4 frame; R-13 insulation                                          |
| Floors                  | Slab-on-grade with 50% tile; R-0 insulation                         |
| Roof                    | Barrel tile, light colored (solar reflectance = $40\%$ )            |
| Attic                   | Standard vented with radiant barrier system (RBS)                   |
| Heating and cooling     | SEER-15, HSPF-8.2 heat pump                                         |
| Air distribution system | Interior ducts & AHU; leakage $\leq 0.03 \text{ cfm}25/\text{ft}^2$ |
| Controls                | Programmable thermostat                                             |
| Ventilation             | Mechanically controlled to minimize infiltration                    |
| Lighting                | 50% fluorescent (or CFL) lighting                                   |
| Refrigerator            | Energy Star qualified                                               |
| Ceiling fans            | Energy Star qualified                                               |
| Dishwasher              | Energy Star qualified                                               |
| Renewable hot water     | Open loop solar hot water (30% tax credit)                          |
| Renewable power         | 2.0 kW-peak photovoltaic system (30% tax credit)                    |

 Table 7. Tallahassee EERE-PV Home (off-the-shelf technology)

| Table 7.a. | EnergyGauge | Predicted Energ | v Use and | Savings f | or Tallahassee | Cases |
|------------|-------------|-----------------|-----------|-----------|----------------|-------|
|            |             |                 |           |           |                |       |

|                           | able 7.a. EnergyGauge Treatered Energy Ose and Savings for Tananassee Cases |           |                |           |  |  |  |  |
|---------------------------|-----------------------------------------------------------------------------|-----------|----------------|-----------|--|--|--|--|
| Energy End Uses           | 2004 baseline                                                               | EERE Home | kWh/kW Savings | % Savings |  |  |  |  |
| Cooling                   | 3,523                                                                       | 1,389     | 2,134          | 60.6%     |  |  |  |  |
| Heating                   | 2,282                                                                       | 728       | 1,554          | 68.1%     |  |  |  |  |
| Hot water                 | 2,663                                                                       | 669       | 1,994          | 74.9%     |  |  |  |  |
| Ceiling fans              | 651                                                                         | 329       | 322            | 49.5%     |  |  |  |  |
| Dishwasher                | 145                                                                         | 115       | 30             | 20.7%     |  |  |  |  |
| Dryer                     | 891                                                                         | 891       | 0              | 0.0%      |  |  |  |  |
| Lighting                  | 2,055                                                                       | 1,522     | 533            | 25.9%     |  |  |  |  |
| Miscellaneous             | 2,671                                                                       | 2,671     | 0              | 0.0%      |  |  |  |  |
| Range                     | 447                                                                         | 447       | 0              | 0.0%      |  |  |  |  |
| Refrigerator              | 775                                                                         | 650       | 125            | 16.1%     |  |  |  |  |
| Total kWh                 | 16,103                                                                      | 9,411     | 6,692          | 41.6%     |  |  |  |  |
| Summer peak kW            | 5.52                                                                        | 3.13      | 2.39           | 43.3%     |  |  |  |  |
| Winter peak kW            | 9.15                                                                        | 6.15      | 3.01           | 32.8%     |  |  |  |  |
| 2 kWp PV kWh              |                                                                             | -2,386    | 9,078          | 56.4%     |  |  |  |  |
| CO <sub>2</sub> tons/year | 16.95                                                                       | 7.29      | 9.66           | 57.0%     |  |  |  |  |





#### Residential Building Energy Efficiency and Renewable Energy (EERE) Savings Potential Tallahassee Peak Day Plots